Mathematics II

(English course)
Second semester, 2012/2013

Exercises (6)

1. Among the following functions, find those which are homogeneous or positively homogeneous and report their degree of homogeneity.
(a) $f(x, y)=\ln \frac{x y^{3}}{x^{4}+y^{4}}$;
(b) $f(x, y)=\ln \frac{x y^{3}}{x^{2}+y^{2}}$;
(c) $f(x, y, z)=\frac{x^{2}+y^{2}}{z^{2} y^{2}}$;
(d) $f(x, y)= \begin{cases}(x-y) e^{\frac{x y}{x^{2}+5 y^{2}},}, & \text { for }(x, y) \neq(0,0), \\ 0, & \text { for }(x, y)=(0,0) ;\end{cases}$
(e) $f(x, y, z)=x y^{2}+x^{\alpha} z^{1+3 \beta}+x^{1-\alpha} y^{\frac{\alpha}{4}} z^{\alpha+\beta-2}$
2. Use Euler's equality to find the values of the parameters α, β that make the following functions positively homogeneous.
(a) $f(x, y, z)=\frac{\sqrt{x z}}{x^{2}+y^{2}}+x^{2 \alpha+\beta} z+x^{\alpha+\beta} y^{2+\beta}$;
(b) $f(x, y)=\frac{x^{2+3 \alpha} y^{\alpha}+x^{\alpha-\beta}}{y^{\beta}}$.
3. Consider a function $f: \mathbb{R}^{n} \backslash\{0\} \mapsto \mathbb{R}$, homogeneous of degree α.

Show that the the following assertions are true:
(a) If $\alpha>0$ and f is continuous, then $\lim _{x \rightarrow 0} f(x)=0$.
(b) If $\alpha<0$ and f is not identically zero, then $f(x)$ does not converge towards any finite number when $x \rightarrow 0$.
(c) If $\alpha=0$, then $\lim _{x \rightarrow 0} f(x)$ exists if and only if f is constant.

